تحقیق مقاله ابزار برقی نیمه هادی

تعداد صفحات: 36 فرمت فایل: word کد فایل: 6362
سال: مشخص نشده مقطع: مشخص نشده دسته بندی: تحقیق مقاله مهندسی برق
قیمت قدیم:۶,۶۰۰ تومان
قیمت: ۴,۵۰۰ تومان
دانلود مقاله
  • خلاصه
  • فهرست و منابع
  • خلاصه تحقیق مقاله ابزار برقی نیمه هادی

    دوران جدید از علم الکترونیک هیدرولیکی برقی با معرفی تراستورها در اواخر دهه 1950 آغاز شد. امروزه انواع مختلفی از ابزار برقی و هیدرولیکی برای کاربرد در فرکانس ها و قدرت های بالا در دسترس وجود دارد. برجسته ترین ابزار برقی و هیدرولیکی تراستورهای محل ورود گیت و خروج روشن خاموش ترانزیستور های دارلینگتون هیدرولیکی برقی و ترانزیستورهای دوقطبی گیت روکشدار شده (iGBIs) می بشند. ابزار هیدرولیکی قبرقی نیمه هادی مهمترین عناصر عملکردی در تمامی کاربردهای تبدیل قدرت برق محسوب می شود.

    ابزار برقی اساساً به عنوان سوئیچ هایی برای تبدیل قدرت از یک شکل به شکل یدیگر به کار برده می شوند. آنها در سیتسم های کنترل موتوری ذخایر برقی متداوم انتقال جریان مستقیم با ولتاژ بالا ذخایر قوه گرم سازی القایی و در بسیاری از سایر کاربردهای تبدیل قدرت به کار برده می شوند. بررسی ویژگی های اصلی این ابزارهای موتوری در این فص آمده است.

    تیراستور و ترایاک (مهار نیرو)

    از تراستورها همچنین یک کننده گاهی کنترل شونده سیلیکونی نام برده می شود. که اساساً یک دستگاه pnpn هم کنشگر سه قسمتی چهار لایه می باش.د که دارای 3 ترمینال یا پایانه می باشد:

    آند، کاتد و گیت محل ورودی، خروجی این دستگاه به واسطه ایجاد یک پالس کوتاه در مسیر گیت و کاتد روشن می شود.

    به محض روشن شدن دستگاه گیت کنترل خود را برای خاموش کردن دستگاه از دست می دهد. و خاموش شدن به واسطه ایجاد ولتاژ برعکس در آند و کاتد رخ می دهد. شکل تراستور و ویژگی های ولتاژ آمپر آن در نمودار 3001 آمده است. اصولاص 2 طبقه بندی در مورد تیراستورها وجود دارد: دستگاه حرکت برگردان (که جریان متناوب را به جریان مستقیم تبدیل می کند و حرکت وارون می سازد که جریان مستقیم را به متناوب تبدیل می کند) تفاوت میان یک دستگاه تیراستور برگردان و وارون ساز زمان پایین خاموش شدن دومی می باشد. تیراستورهای برگردان پایین است و در کاربردهای دگرسو سازی های طبیعی استفاده می شوند. تیراستورهای وارون ساز در کاربردهای تبدیل برق اضطراری همچون جاپرها dc-dc و وارون سازی dc-ac استفاده می شوند. تیراستورهای وارون ساز به ویسله تبدیل جریان به صفر با استفاده از یک مدار خارجی تبدیل برق خاموش می شوند. و این امر مستلزم اجزای سازنده تبیدل برق اضافی می باشد. از این رو خسارات اضافی در دستگاه وارون ساز جریان را موجب می شود.

    تیراستورها در شرایط جریان های موقتی و قابلیت dv/dt بسیار قوی و نیرومند عمل می کنند. ولتاژ پیشین در تیراستورها حدود 5/1 تا 2 ولت می باشد. و حتی در جریان های بیشتر در ترتیب A1000 اغلب به 3 ولت هم می رسد.

    هنگامی که میکروولتاژ پیشین کاهش برق دستگاه را در هر جریان ایجاد شده مشخص می کند کاهش برق تغییر یافته تبدیل به فاکتور مسلمی برای تحت تاثیر قرار دادن دمای هم کنشگر و بخش نیم رسانا در فرکانس های بسیار بالا م یشود. به همین علت ماکزیمم فرکانس های متغیر ممکن که از تیراستورها استفاده می کنند، در مقایسه با سایر دستگاه های برقی که در این فصل به آنها اشاره شده است محدودتر می باشد.

     

    تیراستورها دارای قابلیت و توان مقاوم I2t می باشند و به وسیله فیزوها محافظت می شوند. قابلیت جریان فراتاخت بدون تکرار تیراستورها حدود 10 برابر جریان زاویه چهارگوشی دار میانگین ریشته رده بندی شده آنها می باشد. (rms) آنها باید توسط شبکه های اتصالی سربالایی به دلیل تاثیرات
    di/d+ , dv محافظت شوند. اگر dr/dt مشخص شد. افزایش یابد تیراستورها ممکن است هدایت جریان را بدون استفاده یک پالس گیت (محل خروج و ورود) شروع کنند. در کاربردهای تبدیل جریان dc به ac لازم است از یک دیود غیر موازنی با میزان سرعت و براورد یکسان و مشابه در طول مسیر هر یک از تیراستورهای اصلی استفاده کنید. تیراستورها تا v 6000 و A 3500 قابل دسترسی و استفاده هستند.

    یک ترایاک  در واقع به طور عملکرد یک جفت از تیراستورهای برگردان جریان که به طور غیرعادی با هم مرتبط اند می باش.د شکل ترایاک و ویژگی های ولت آمپر آن در نمودار 3002 نمایش داده شده است. بعلت تلفیق و یکی سازی، ترایاک از ویژگی dr/dt دوباره به کار برده شده ضعیف، حساسیت ضعیف جریان گیت ورودی و خروجی در زمان روشن بودن دستگاه طولانی تر بودن مدت زمان خاموشی برخوردار می باش.د ترایاک اساساً در کاربرد های کنترل فاز همچون تنظیم کننده ac برای روشن کردن و کنترل فن و همچنین در رله های حالت جامد به کار برده می شوند.

    تیراستورهای خاموش کننده گیت: (GTO)

    GTO در واقع ابزار برقی می باشند که با یک پالس کوتاه جریان گیت روشن شده و به واسطه ایجاد یک پالس گیت برعکس جریان خاموش می شوند. این دامنه نوسان جریان بالعکس گیت بستگی به جریان آندی دارد که خاموش می شود. بنابراین نیازی به یک مدار دگرسو سازی خارجی برای خاموش کردن آن نیست. زیرا خاموش شدن به واسطه میان پر زدن مستقیم رساناگر ها به مدار گیت تامین می شود و زمان خاموش شدن آن بسیار کوتاه می باشد. در نتیجه قابلیت بیشتری نسبت به ترانزیستورها برای عملکرد با فرکانس بالا در اخترا قرار می دهد. نماد GTO و ویژگی های خاموش شدنش در نمودار 30.3 نشان داده شده است.

    GTO داارای قابلیت و توانایی مقاوم I2t می باشد و در نتیجه با فیزوهای نیم هادی قابل محافظت هستند. برای قابل اطمینان بودن عملکرد GTO جنبه های حیاتی و مهم طراحی مناسب از مدار خاموش کردن گیت و مدار اتصالات سربالایی آن می باشد.

    یک GTO از دریافتی جریان خاموش کردن ضعیفی بنا به تعریف 4 به 5 برخوردار است. بعنوان مثال یک جریان اوج 2000 آمپری GTO ممکن است مستلزم یک جریان 500 آمپری از جریان گیت بالعکس باشد. همچنین در یک GTO تمایل به جفت شدن در دماهایی بالاتر از 125 درجه دارد. GTO تا جریان های حدود 4500 و 2500A قابل دسترسی هستند.

    تیراستورهای بالعکس کننده جریان (RCT) و یکسو کننده کنترل شونده سیلیکونی نامتقارن (ASCR) معمولا در کاربردهای وارون سازی جریانی، یک دیود در حالت غیر موادی به تیراستور برای اهداف تبدیل جریان برق آزادسازی جریان متصل می شود. در RCT ها دیود با یک تیراستور تعویض متغیر جریان سریع در کی تراشه سیلیکوی تک ادغام شده است. بنابراین شمار ابزار موتوری و برقی قابل کاهش است.

    این ادغام و ترکیب منجر به بهود و پیشرفت ویژگی های دینامیکی و استاتیکی راهی تندکارایی عملکرد نهایی مدار آن می شود. RTC ها اساساً برای کاربردهای خاصی همچون کشش طراحی شده اند. دیود ناموازی ولتاژ بالعکس را در مسیر تیراستور از 1 به 20 ولت تغییر محدود می کند. همچنین به خاطر عمل احیا بالعکس دیودها ممکن است زمانی که دیود از ولتاژ بالعکس خود دوباره پوشانده می شود تیراستور دوباره به کار برده شده در حد بسیار بالا به نظر آیند.

    این امر استفاده وسیع شبکه های RC بزرگ و وسیع را برای حذف کردن ولتاژهای موقتی و گذرا ضروری ساخته است. همینطور که دامنه کاربرد تیراستورها و دیودها به فرکانس های بالاتر افزایش می یابد. شارژ بازیافت بالعکس آنها به طور روزافزونی مهمتر می شود. شارژ بازیافت و احیای بالعکس در سطح عالی و بالا به اتلاف انرژی و برق بیش از حد در هنگام انتقال منجر می شود.

    ASCR، از قابلیت حذف و جلوگیری کردن جریان مشابهی همانند تیراستور وارون ساز جریان رخ می دهد. برخوردار است. اما دارای یک تیراستور محدود بالعکس از یک سرعت و برآ‎ورد مشابه می باشد. ASCR دارای این ویژگی خاص می باشد. زمان خاموش شدن سریع که در نتیجه می تواند در یک فرکانس بالاتر از یک SCR عمل می کند. از آنجائی که زمان خاموش شدن آن به وسیله یک عامل تقریباً 2 برابر پاینی کاهش آورده می شود. اندازه اجزای سازنده تبدیل جریان برق آن نیز به نصف کاهش می یابد. به همین علت خسارات و اتلاف انرژی در انتقال جریان نیز کاهش خواهند یافت. تکنیک های خاموش کردن با استفاده از گیت برای کاهش حتی بیشتر زمان خاموش کردن یک ASCR به کار برده می شوند. کاربرد یک ولتاژ منفی در یک گیت در مدت زمان خاموش بودن دستگاه کمک می کند. به تخلیه کردن بار الکتریکی ذخیره شده در دستگاه و هم چنین به مکانیزم احیاء و بازیافت نیز کمک می کند. این امر کاهش مدت زمان خاموش شدن را به وسیله یک فاکتور مهم تا حدود 2 برابر دستگاه های معمولی و سنتی تحت تاثیر قرار می دهد.

    ترانزیستور های برقی (موتوری هیدرولیکی)

    ترانزیستورها موتوری در کاربردهایی از 1، 2 گرفته تا چندین هزار کیلووات استفاده می شوند و فرکانس ها را تا حدود 10KHz تغییر می دهند. ترانزیستورهای موتوری به کار برده شده در کاربردهای تبدیل جریان برق عمدتاً از انواع npn می باشند. این ترانزیستورها با ذخیره جریان اصلی کافی روشن می شوند و این محرک پایه باید در طول دوره هدایت جریان آن کاملا حفظ شود. با جابجایی و انتقال محرک پایه و منفی کردن ولتاژ پایه این ترانزیستور خاموش می شود. ولتاژ شجاع دستگاه معمولاً 5/0 تا 5/2 ولت می باشد. و زمانی که جریان افزایش می یابد بالا می رود. نتیجتاً خسارات و اتلاف نیرو در زمان روشن بودن دستگاه بیشتر از برقرار بودن جریان افزایش می یابد. خسارات و اتلاف حالت خاموش بودن ترانزیستور بسیار کمتر از اتلاف انرژی و خسارات در حالت روشن بودن دستگاه می باشد. زیرا جریان نشت دستگاه بر طبق تعداد کمی از میلی آمپرهایی می باشد. بعلت زمان های انتقال نسبتاً زیاد تر، اتلاف و خساره انتقال جریان به طور چشمگیری با تغییر دادن فرکانس افزایش می یابد. ترانزیستورهای موتوری تنها می توانند ولتاژهای پیشین را حذف و متوقف کنند. میزان سرعت و برآورد ولتاژ بالای بالای بالعکس این دستگاه های کمتر از 5 تا 10 ولت می باشد.

    ترانزیستورهای موتوری توانایی مقاوم را ندارند. به بیانی دیگر آنها تنها قادر به حذف بسیار اندک انرژی قبل از خراب شدن و از کار افتادن هستند.

    در نتیجه نمی توان با فیزوهای هادی از آنها محافظت کرد. و بنابراین یک روش محافظتی الکترونیکی باید مورد استفاده قرا رگیرد.

    برای حذف کردن شرایط جریان اصلی ساختار (ترکیب) های دارلینگتون معمولا مورد استفاده قرار می گیرند. و آنها اغلب در بسته های جدا و یا یکپارچه و عظیم قابل دسترسی هستند. ساختار دارلینگتون اصلی به طور شماتیک در نمودار 30.40 نشان داده شده است. ترکیب دارلینگتون مزیت خاصی را در اختیار قرار می ده.د که به طور قابل ملاحظه ای می تواند جریانی که به وسیله ترانزیستور برای یک محرک پایه داده شد. تغییر داده و افزایش دهد. برای دارلینگتون معمولا بیشتر از چیزی است که از یک ترانزیستور منفرد با جریان مشابه با افزایش ذکر شده در اتلاف انرژی در حالت روشن بودن دستگاه می باشد. در طول تغییر جریان هم کنشگر دو بخش نیم رسانای جمع کننده جریان بالعکس ممکن است تاثیرات شکسته شدن نقاط داغ را نشانا دهد که با نقاط عملیات امن جریان عکس و نقاط عملیاتی امن نیروی محرک ووردی پیشین (FBSOA) مشخص شده است. دستگاه های جدید با عدم هندسه پایه الکترون نشان در هم جفت شده و دیجیت شده، باعث توزیع و پخش جریان واحدتر می شوند. و در نتیجه باعث بهبود و پیشرفت تاثیرات شکستن ثانیه ها می شوند. معمولا در یک شبکه کمکی تغییر دهنده خوب طراحی شده عملکرد دستگه را در SOAS ها به خوبی محدود می کند.

    MOSFET های موتوری (برقی یا هیدرولیکی)

    MOSFET های برقی توسط سازنده ها و تولید کننده های مختفی در هندسه داخلی در معرض فروش قرار داده شده اند. (با اسمهای متفاوتی همچون مگاموسی، TMOS, SIPMOS, HEXFET). ویژگی های بی نظیر و فوق العاده آنها موجب جذاب بود بالقوه آنها برای کاربردهای انتقال و باز و بسته کردن جریان الکتریسیته است. لزوماً برخلاف ترانزیستورهای دوقطبی دستگاه هایی گرداننده و محرک ولتاژ هستند تا دانشگر جریان برق.

    محل ورودی یا خروجی یک MOSEFT به طور الکتریکی با یک لایه ای از اکسید سیلیکون از منبع جدا شده است. گیت تنها موجب یک جریان فراریزش یک دقیقه ای در ترتیب و شکل نانوآمپر می شود. بنابراین مدا کشش دانشگر گیت ساده بوده و میزان اتلاف انرژی و برق در مدار کنترل گیت تقریباً ناچیز و بی اهمیت می باشد. اگرچه در حالت ثابت بودن گیت عملاً موجب هیچ نوع جریانی نمی شود. و این موضوع خیلی تحت شرایط گذرا و موقتی نمی باشد. برق پذیری گیت به منبع و گیت به زهکشی باید باردار شده و به طور مناسب و با دقت به منظور دستیابی به سرعت انتقال و باز و بسته کردن دلخواه بی بار شود. و مدار محرک یا دانشگر نیز باید از یک آمپدانس خروجی نسبتاً پایینی برای ذخیره باردار دشارژ کردن لازم و تخلیه بار الکتریکی جریان ها برخوردار باشد. شکل مدار یک MOSEFT برقی در نمودار 30.5 نمایش داده شده است.

    MOSEFT های برقی اکثراً دستگاه های رسانگری هستند و زمان ذخیره ای برای حداقل رسانگری در آنها وجود ندارد.

  • فهرست و منابع تحقیق مقاله ابزار برقی نیمه هادی

    فهرست:

     

    ندارد
     

    منبع:

    Bk.Bose الکترونیک قدرت و درایوهای Ac انگل دود کلیفر:

    BK. Bose سرعت قابل تعدیل درایوهای Ac بررسی از ساختمان تکنولوژی Proc.IEEE نسخه  70. صفحات 116-135. فیبر به 19823.

    B.K. Bose الکترونیک قدرت جدید نیویورک. انتشارات 1992. IEEE.

    A.K.S. Bhat روش یک شکل سازی برای آنالیز حالت ثابت مبدل های منعکس کننده صدا ترانس IEEE، الکترونیک صنعتی، نسخه 38، شماره 4. صفحات 251-259 آگوست 1991.

    A.K.S.Bhat مبدل انعکاس صدا مجموعه پارالل pwm، فرکانس ثابت ترانس IEEE، کاربردی صنعتی نسخه 28، شماره 5، صفحات 1002-1009 سال 1992.

    K.H.liu , f.C.Lee سوئیچ های انعکاس صدا و ویژگی ها و توپولوژی یادداشت کنفراس متخصصان الکترونیک قدرت IEEE، 1998 صفحات 106-116.

    Motorla یادداشت تنظیم ولتاژ در حالت سوئیچ/ خطی. 1988.

    سوئیچ کردن و یونی ترود مبدأ قدرت تنظیم شده طرح lexing Ton, Sening Manual شرکت یونی ترود، 1984.

     

ثبت سفارش
عنوان محصول
قیمت