تحقیق مقاله ژئولوژی

تعداد صفحات: 108 فرمت فایل: word کد فایل: 1526
سال: مشخص نشده مقطع: مشخص نشده دسته بندی: تحقیق مقاله مهندسی شیمی
قیمت قدیم:۱۳,۸۰۰ تومان
قیمت: ۱۰,۸۰۰ تومان
دانلود مقاله
  • خلاصه
  • فهرست و منابع
  • خلاصه تحقیق مقاله ژئولوژی

    چکیده:

           در این پروژه ابتدا رئولوژی مواد پلیمری مورد بررسی قرار گرفته است. در ادامه آمیزه‌های پلیمری و روشهای تهیه این ترکیبات بیان و همچنین به بحث پیرامون شرایط سازگاری و امتزاج- پذیری و کریستالیزاسیون این نوع مواد پرداخته شده است .

           رئولوژی آمیزه‌های پلیمری و معادلات تجربی و قوانین حاکم بر این ترکیبات از دیدگاه رئولوژیکی از جمله مطالب می‌باشد.

           بحث خاصیت ویسکوالاستیک خطی در آمیزه‌های پلیمری و نتایج و معادلات دیفرانسیلی حاکم بر آن و بررسی آنها در مدلهای نظری چون ماکسول و کلوین و ... و همچنین روشهای اندازه گیری و تعیین عملکرد ویسکوالاستیک خطی از جمله بررسی‌هاست .

           در نهایت رفتار ویسکوالاستیک آمیزه‌های پلیمری با استفاده از مدل امولسیون پالیرین برای تخمین مقاومت کشش سطحی بین اجزاء تشکیل دهنده یک آمیزه از طریق داده‌های تجربی بررسی شده و مدول پیچیده (G*) ترکیبات مذابی از طریق مقدار توزیع اندازه مواد تشکیل دهنده و مقدار نیروی کشش بین سطحی آنها محاسبه گردیده است.

           سه آمیزه PS/PMM(80/20) و PS/PEMA – 1(80/20) و PS/PEMA – 2(70/30) مورد مقایسه و مدول ذخیره و افت آنها با پیشگویی های مدل امولسیون پالیرین قیاس گردیده است و این نتیجه حاصل می شود که :

           حاکمیت مدل برای محدوده وسیع و کاملی از فرکانسها برقرار می‌باشد و این مدل برای این دسته از آمیزه‌ها در ناحیه ویسکوالاستیک خطی بخوبی و با خطای بسیار کمی پاسخگوست.

    فصل اوّل: رئولوژی (Rheology)

     

    1-1 تاریخچه پیدایش رئولوژی[1]

    نیوتن[2] (1727-1642) اولین فردی بود که برای مدل کردن سیالات با آنها برخوردی کاملاً علمی نمود. وی در قانون دوم مقاومت خود، کل مقاومت یک سیال را در برابر تغییر شکل (حرکت) نتیجه دو عامل زیر دانست:

    الف) مقاومت مربوط به اینرسی (ماند) سیال

    ب) مقاومت مربوط به اصطکاک (لغزش ملکولها یا لایه‌های سیال بر هم‌دیگر)

    و در نهایت قانون مقاومت خود را چنین بیان نمود: «در یک سیال گرانرو[3]، تنش مماسی (برشی) متناسب با مشتق سرعت در جهت عمود بر جهت جریان است.»

    در اواخر قرن نوزدهم علم مکانیک سیالات شروع به توسعه در دو جهت کاملاً مجزا نمود.
    از یک طرف علم تئوری هیدرودینامیک که با معادلات حرکت اولر[4] در مورد سیال ایده‌آل فرضی شروع می ‌شد، تا حد قابل توجهی جلو رفت. این سیال ایده‌آل، غیر قابل تراکم و فاقد گرانروی و کشسانی (الاستیسیته) در نظر گرفته شد. هنگام حرکت این سیال تنشهای برشی وجود نداشته و حرکت کاملاً بدون اصطکاک است. روابط ریاضی بسیار دقیقی برای این نوع سیال ایده‌آل در حالتهای فیزیکی مختلف بدست آمده است. باید خاطر نشان نمود که، نتایج حاصل از علم کلاسیک هیدرودینامیک در تعارض آشکار با نتایج تجربی است (بخصوص در زمینه‌های مهمی چون افت فشار در لوله‌ها و کانالها و یا مقاومت سیال در برابر جسمی که در آن حرکت می‌نماید). لذا این علم از اهمیت عملی زیادی برخوردار نگشت. به دلیل فوق مهندسین که به علت رشد سریع تکنولوژی نیازمند حل مسائل مهمی بودند، تشویق به توسعه علمی بسیار تجربی، بنام هیدرولیک شدند. علم هیدرولیک بر حجم انبوهی از اطلاعات تجربی متکی بود و از حیث روشها و هدفهایش، با علم هیدرودینامیک اختلاف قابل ملاحظه‌ای داشت.

    در شروع قرن بیستم دانشمندی بنام پرانتل[5] نشان داد که چگونه می‌توان این دو شاخه دینامیک سیالات را به یکدیگر مرتبط نمود و با این کار به شهرت رسید. پرانتل به روابط زیادی بین تجربه و تئوری دست یافت و با این کار توسعه بسیار موفقیت‌آمیز مکانیک سیالات را امکان‌پذیر نمود. البته قبل از پرانتل نیز بعضی از محققین بر این نکته اشاره کرده بودند که اختلاف بین نتایج
     هیدرو دینامیک کلاسیک و تجربه در بسیاری از موارد به دلیل صرف نظر کردن از اصطکاک سیال است.

    علاوه بر این، از شناخت معادلات حرکت سیالات با در نظر گرفتن اصطکاک )معادلات ناویر- استوکس[6]( مدت زمانی سپری می‌‌شد. اما به دلیل مشکلات حل ریاضی این معادلات در آن زمان (باستثنای موارد خاص)،در برخورد تئوریک با حرکت سیالات گرانرو عقیم مانده بود. در مورد دو سیال بسیار مهم یعنی آب و هوا، نیروی ناشی از لغزش لایه‌های سیال بر یکدیگر (گرانروی آب
     N.S/m2 3-10×1 و گرانروی هوا N.S/m2 3-10×5/2) در مقایسه با سایر نیروها (نیروی ثقل و فشار، N/m2 105) قابل اغماض می‌باشد. بنابراین می‌توان پی برد که چرا درک تأثیر عامل مهمی همچون نیروی اصطکاک بر حرکت سیال در تئوری کلاسیک تا این حد مشکل بوده است. در مقاله‌ای تحت عنوان سیالات با اصطکاک بسیار کم که قبل از کنگره ریاضیات در هیدلبرگ[7] در 1904 قرائت گردید، پرانتل نشان داد که می‌توان جریانات گرانرو را با شیوه‌ای که دارای اهمیت عملی زیادی است به دقت تجزیه و تحلیل نمود. با استفاده از اصول تئوریک و برخی آزمایشهای ساده پرانتل اثبات نمود که جریان سیال اطراف یک جسم جامد را می‌توان به دو ناحیه تفکیک نمود:

    لایه بسیار نازک در مجاورت جسم (لایه مرزی) که در آن اصطکاک نقش مهمی را بازی می‌کند.

    ناحیه دورتر از سطح جسم که در آن اصطکاک قابل اغماض است.

    بر مبنای این فرضیه (Prandtl) موفق به ارائه برداشت فیزیکی قابل قبول از اهمیت جریانات گرانرو گردید، که در زمان خود موجب ساده شدن قابل توجه حل ریاضی معادلات گردید. آزمایشهای ساده‌ای که توسط پرانتل در یک تونل آب کوچک انجام شد بر تئوریهای موجود صحه گذاشت. بدین ترتیب او اولین قدم را جهت ارتباط تئوری و نتایج تجربی برداشت. در این رابطه تئوری لایه مرزی بسیار مفید واقع شد، زیرا عامل مؤثری در توسعه دینامیک سیالات بود و بدین ترتیب در مدت زمان کوتاهی به یکی از پایه‌های اساسی این علم مدرن تبدیل شد. پس از شروع مطالعات در زمینه سیالات دارای اصطکاک یک تئوری دینامیکی برای ساده‌ترین گروه سیالات واقعی (سیالات نیوتنی)[8] توسعه یافت. البته این تئوری در مقایسه با تئوری سیالات ایده‌آل از دقت کمتری برخوردار بود.

    با رشد صنعت تعداد سیالاتی که رفتار برشی آنها با استفاده از روابط سیالات نیوتنی قابل توجیه نبود، رو به افزایش گذاشت. از جمله این سیالات می‌توان محلولها و مذابهای پلیمری، جامدات معلق در مایعات، امولسیونها و موادی که دو خاصیت گرانروی و کشسانی را تواماً دارا می‌باشند (ویسکوالاستیکها) اشاره نمود. بررسی رفتار این سیالات مهم موجب پیدایش علم جدیدی بنام «رئولوژی[9] » شد.

    در مورد کلمه رئولوژی و پیدایش آن بد نیست به صحبتهای تروسدل[10] استاد دانشگاه
    جان هاپکینز[11] در هشتمین کنگره بین‌الملی رئولوژی گوش فرا داد:"از من خواسته شد که درباره رئولوژی سخن بگویم، برای فرار از ادای این وظیفه مشکل فکر می‌کنم هیچ چیز بهتر از نقل قول گفتگوی دلنشینی که با دوست عزیز و قدیمی‌ام مارکوس رینر[12] پس از صرف شام در چهارمین کنگره بین‌المللی رئولوژی داشتم، نیست". او برای شروع نقل قول داستان چگونگی ساخته شدن نام رئولوژی چنین گفت: "هنگامی که من وارد شدم (سال 1928 به شهر ایستون در ایالت پنسیلوایای امریکا، محل تولد رئولوژی) بینگهام[13] به من گفت: «در اینجا شما مهندسین ساختمان و بنده شیمیدان نشسته‌ایم و با یکدیگر روی مسئله مشترکی کار می‌کنیم، با توسعه شیمی کلوئیدها می‌توان به این همکاری وسعت بخشید. بنابراین توسعه شاخه جدیدی از فیزیک که این قبیل مسائل را در بر گیرد، مفید خواهد بود.» من گفتم چنین شاخه‌ای از فیزیک قبلاً وجود داشته است (مکانیک محیط‌های پیوسته). بینگهام افزود: «نه چنین عنوانی شیمیدانها را جلب نخواهد نمود زیرا برای آنها بیگانه است.» پس از این گفتگوها بینگهام با مشورت یک استاد زبان کلاسیک عنوان رئولوژی را برای این شاخه از علم انتخاب نمود که از سخن معروف هراکلیتوس[14] اقتباس شده است. هراکلیتوس می‌گفت همه چیز در جریان است. "

    رینر[15] خاطر نشان ساخت که افراد غیر متخصص غالباً رئولوژی را با تئولوژی[16] (الهیات) اشتباه می‌گرفتند. او از این موضوع در تعجب بود و نمی‌توانست ارتباطی بین این دو کلمه پیدا کند. در واقع او فراموش کرده بود که قهرمان شبه آسمانی رئولوژی، در تاریخ بنام هراکلیتوس مبهم مشهور است که نظر معروف خود را جهت دنبال کردن الهیات عرضه کرده است. مخالفین این فیلسوف بر او خورده می‌گرفتند که خواص فقط در حالت سکون قابل تعیین هستند ولی علم رئولوژی آرزوی دیرین او یعنی تعیین خواص ماده در حال جریان را برآورده است.

    تعریف دقیق و علمی رئولوژی عبارتست از: رئولوژی علمی است که تغییر شکل مواد را تحت اعمال نیرو مورد بررسی قرار می‌دهد، این تعریف بیشتر در مورد مایعات و شبه مایعات به کار می‌رود. به عبارتی می‌توان علم رئولوژی را به دو قسمت اصلی تقسیم نمود:

    بدست آوردن رابطه‌ای (معادله قانونمندی) ما بین تغییر شکل و نیرو از طریق نتایج تجربی و یا تئوریهای مولکولی

    بسط این روابط و ارتباط آنها با ساختمان، ترکیب مواد، دما، فشار و غیره

    توسعه رئولوژی در سالهای بین دو جنگ جهانی آغاز گردید. بنابراین رئولوژی علمی زاییده نیازهای عملی است و به همین دلیل در ابتدا روشهای تجربی ابداع شد. به موازات پیشرفت تحقیقات و کشف پدیده‌های جدید، علم رئولوژی گسترش یافته و به شاخه‌های تحقیقات فیزیکی، شیمیایی، تحقیقات مهندسی و بالاخره تحقیقات ریاضی تقسیم شد.

    بعضی از صنایع که با علم رئولوژی سر و کار دارند عبارتند از: صنایع لاستیک، پلاستیک، الیاف مصنوعی، نفت، تولید صابون و شوینده‌ها، دارو سازی، بیولوژی، انرژی اتمی، سیمان،
     صنایع غذایی، خمیر کاغذ، مواد شیمیائی سبک و سنگین، فرآیندهای تخمیری (و عملیاتی که در آنها از روغن استفاه می‌شود) فرآیندهای سنگهای معدنی، چاپ، رنگ و غیره. از گستردگی صنایع درگیر با سیالات غیر نیوتنی مشخص می‌شود که شناخت علم رئولوژی از ضرورت اجتناب‌ناپذیری برخوردار است هر چند که این علم هنوز در بسیاری از زمینه‌ها قادر به پاسخگوئی مشکلات عملی نیست.

     

    1-2 مواد از دیدگاه رئولوژی

    رئولوژی[17]  علمی است که تغییر شکل و جریان و همچنین قابلیت کیفی تغییر شکل و جریان مواد را بیان می‌کند. دیلی[18] علم رئولوژی را این‌گونه تعریف می‌کند: «رئولوژی علمی است که تغییر شکل مواد را تحت اعمال تنش خارجی بررسی می‌کند.» لذا ضرورت بررسی مواد موجود در طبیعت از دیدگاه رئولوژی آشکار می‌شود. برای نیل به چنین هدفی ابتدا می‌بایست چند پدیده رئولوژیکی، بطور دقیق تعریف گردد.

     

  • فهرست و منابع تحقیق مقاله ژئولوژی

    فهرست:

    فصل اوّل : رئولوژی مواد پلیمری

    تاریخچه پیدایش رئولوژی...............................................................................................................

    مواد از دیدگاه رئولوژی....................................................................................................................

         1-2-1 پدیده‌های رئولوژیکی................................................................................................................

         1-2-2 تنش تسلیم در جامدات..........................................................................................................

         1-2-3 تنش تسلیم در رئولوژی..........................................................................................................

         1-2-4 تقسیم بندی مواد......................................................................................................................

    فصل دوّم : آمیزه‌های پلیمری

    2-1-1 مقدمه ..................................................................................................................................................

    2-1-2  تعاریف.................................................................................................................................................

    2-1-3 روشهای تهیه آمیزه‌های پلیمری....................................................................................................

    2-1-4 رفتار اجزا آمیزه‌های پلیمری..........................................................................................................

    2-1-5 امتزاج پذیری آمیزه‌های پلیمری...................................................................................................

    2-1-6 سازگاری آمیزه‌های پلیمری.............................................................................................................

    2-1-7 سازگاری بواسطه افزودن کوپلیمر.................................................................................................

    2-1-8 روشهای تخمین سازگاری و امتزاج پذیری آمیزه‌ها و آلیاژهای پلیمری.............................

    2-1-9 کریستالیزاسیون آمیزه‌های پلیمری..............................................................................................

    2-2-1 رئولوژی پلیمرها..................................................................................................................................

    2-2-2 رئولوژی آمیزه‌های پلیمری ............................................................................................................

         2-2-2-1 مقدمه ....................................................................................................................................

         2-2-2-2 ویسکوزیته آمیزه‌ها و آلیاژهای پلیمری ........................................................................

         2-2-2-3 معادلات تجربی ویسکوزیته آمیزه بر حسب غلظت سازنده‌های پلیمری..............

         2-2-2-4 جریان برشی پایدار آمیزه‌های پلیمری...........................................................................

         2-2-2-5 الاستیسیته مذاب آمیزه‌های پلیمری.............................................................................

    فصل سوّم : خاصیت ویسکوالاستیک خطّی

    3-1 مقدمه .......................................................................................................................................................

    3-2 مفهوم و نتایج از خاصیت خطی بودن .............................................................................................

    3-3 مدل ماکسول و کلوین .........................................................................................................................

    3-4 طیف افت یا آسایش..............................................................................................................................

    3-5 برش نوسانی.............................................................................................................................................

    3-6 روابط میان توابع ویسکوالاستیک خطی...........................................................................................

    3-7  روشهای اندازه‌گیری..............................................................................................................................

         3-7-1 روشهای استاتیک......................................................................................................................

         3-7-2 روشهای دینامیک: کشش نوسانی.........................................................................................

         3-7-3 روشهای دینامیک: انتشار موج...............................................................................................

         3-7-4 روشهای دینامیک: جریان ثابت ............................................................................................

     

     

     

    فصل چهارم: بررسی رفتار ویسکوالاستیک آمیزه های پلیمری با استفاده از مدل امولسیون پالیریَن

    4-1 مقدمه .......................................................................................................................................................

    4-2 مدل پالیریَن  (Palierne model) ...........................................................................................

    4-3 نتایج تجربی و بحث ..............................................................................................................................

    منابع و مراجع.

    منبع:

    [1] C.Laxroix, M.Bousmina, P.J.Carreauand and B.D.Favis,                                                                  
    “ Viscoelastic morphological and interfacial properties”, Center de Recharche apploquee surles polymers، CRASP،  Ecole polytechnique Po Box 6079, Stn centre– ville, Montreal.

    [2] D.Graebling, A.benkira, Y.Gallot and R.Muller، “ Dynamic viscoelastic behaviour of polymer blends in the Melt- experimental Results For PDMS /poe-DO، PS/PMMA  And PS/PEMA blends” in stitut charles sadron (CRM-EAHP), 4 ,rue Boussingault,  67000 Strasborg, France.

    [3] Colloids and Surface, V 55, 1991, Page 89-103.

    [4] Journal of coloid interface Science, V 40, Issue 3, Sep 72, Page 448-467.

    [5] H.A.Barnes, J.F.hutton and K.Walters, “ an introduction to rheology “, Elsevier since Amsterdam, 7 imtression 2003.

    [6] Bousmina M., Rheol. Acta, 38, 73-83 (1999).

    [7] Doi M. and Ohta T., J. Chem. Phys., 95, 1242-1284 (1991).

    [8] Yu C., Zhou C. and Bousmina M., J. Rheol., 49, 215-236 (2004).

    [9] Vinckier I. and Laun H.M., , J. Rheol., 45, 1373-1385 (2001).

    [10] Iza M., Bousmina M. and Jerome R., Rheol Acta, 10, 10-22 (2001).

    [11] Almusallam A.S., Larson R.G. and Solomon M.J., J. Rheol., 44, 1055-1083 (2000).

    [12] Grmela M., Bousmina M. and Palierene J.F., Rheol. Acta, 40, 560-569 (2001).

    [13] Lacroix C. Grmela M. and Carreau P.J., J. Rheol., 42, 41-62 (1998).

    [14] Yu W., Bousmina M., Grmela M., Palierne J.F. and Zhou C., J. Rheol., 46, 1381-1399 (2002).

    [15] Palierne J.F., Rheol., Acta, 29, 204-214 (1991).

    [16] Utracki L.A., Commercial Polymer Blends, Chapman & Hall, London, (1998).

    [17] Graebling D., Muller R. and Palierne J.F., Macromolecules, 26, 320-329 (1993).

    .

ثبت سفارش
عنوان محصول
قیمت