پایان نامه بررسی کارایی پراکسید هیدروژن و پراکسید هیدروژن نانو ذرات آهن صفر در حذف رنگ Acid Red 18 از فاضلاب سنتتیک

تعداد صفحات: 139 فرمت فایل: word کد فایل: 10002625
سال: مشخص نشده مقطع: مشخص نشده دسته بندی: پایان نامه بهداشت
قیمت قدیم:۲۰,۵۰۰ تومان
قیمت: ۱۸,۴۰۰ تومان
دانلود مقاله
  • خلاصه
  • فهرست و منابع
  • خلاصه پایان نامه بررسی کارایی پراکسید هیدروژن و پراکسید هیدروژن نانو ذرات آهن صفر در حذف رنگ Acid Red 18 از فاضلاب سنتتیک

    پایان نامه جهت اخذ درجه کارشناسی ارشد

    بهداشت

    بررسی کارایی پراکسید هیدروژن و پراکسید هیدروژن – نانو ذرات آهن صفر در حذف رنگ Acid Red 18 از فاضلاب سنتتیک

    چکیده

    زمینه و هدف: رنگها مواد آلی، با ساختار پیچیده، غالبا سمی، سرطانزا، جهش زا، غیرقابل تجزیه بیولوژیکی و پایدار در محیط زیست می باشند و چنانچه بدون تصفیه وارد محیط زیست شوند باعث به خطر انداختن محیط زیست و سلامت انسان می شوند. هدف از این مطالعه بررسی کارایی دو فرآیند پراکسیدهیدروژن و پراکسید هیدروژن – نانو ذرات آهن صفر ظرفیتی در حذف رنگ Acid Red 18 از محیط های آبی است.

    روش کار: این مطالعه در مقیاس آزمایشگاهی انجام شد. در این مطالعه کارایی پراکسیدهیدروژن و پراکسید هیدروژن – نانو ذرات آهن صفر ظرفیتی در حذف رنگ Acid Red 18 ازیک محلول سنتتیک بررسی شد. هم چنین اثرpH محلول، غلظت رنگ، پراکسیدهیدروژن، غلظت نانو ذرات آهن صفر ظرفیتیی و زمان تماس در کارایی عمل رنگ زدایی مورد بررسی قرار گرفت.

    یافته ها: نتایج آزمایشات نشان داد که فرآیند ترکیبی پودر آهن -پراکسید هیدروژن، نسبت به پراکسیدهیدروژن تنها از قدرت رنگبری بالایی برخوردار است. در 3=pH، زمان تماس 80 دقیقه، پراکسید هیدروژن 200 میلی مول، غلظت رنگ 50 میلی گرم در لیتر و غلظت نانو ذرات آهن صفر ظرفیتی 2 گرم در لیتر، حذف رنگ در حدود 98 درصد بوده است. برای پراکسیدهیدروژن تنها با زمان تماس 80 دقیقه، 3=pH و پراکسید هیدروژن 200 میلی مول، راندمان حذف 34 درصد مشاهده شده است.

    نتیجه گیری: با توجه به نتایج آزمایش ها، استفاده از پراکسید هیدروژن – نانو ذرات آهن صفر ظرفیتی کارایی مناسبی در حذف رنگ Acid Red 18 از گروه رنگ های آزو، دارد.

    کلمات کلیدی: نانو ذرات آهن صفر ظرفیتی، پراکسیدهیدروژن، Acid Red 18، حذف رنگ

     

    مقدمه

    آب اهمیت ویژه ای در تمدن بشری دارد. آب در ایران باستان یکی از چهار پایه جهان هستی و به بیان قرآن سرآغاز زندگی است. در روند ازدیاد بی رویه جمعیت بشر، توسعه صنایع، افزایش پساب ها، پسماندها، کمبود آب و آلودگی منابع آب، جهان با بهران روبرو شده است. امروزه آب سالم جایگاه ویژه ای در تامین شرایط زیست محیطی مناسب، سلامتی جانداران و کیفیت زندگی بشر دارد. در این پیوند تصفیه مناسب آب و پساب، بهبود روش های موجود و توسعه روش های جدید، از روش هایی هستند که امروزه دنبال می شوند (1).

    یکی از بزرگترین صنایع مصرف کننده آب، صنایع نساجی و رنگ رزی می باشند. میزان مصرف آب در این صنایع بین 25-250 مترمکعب به ازای هر تن محصول است (2).  رنگ ها موادی با ساختار پیچیده بوده که در نتیجه مراحل مختلف نظیر رنگرزی و تکمیل در صنایع نساجی به محیط زیست وارد می شود. این مواد از نقطه نظر شیمیایی به انواع آزو[1]، هتروسیکلیک[2]، فتالوسیانین[3] و آنتراکوئینون[4] طبقه بندی می شوند. هم چنین رنگ ها بر اساس کاربردشان به انواع خمره ای، فعال، مستقیم، اسیدی، دیسپرس و کاتیونی تقسیم می گردند. به دلیل عملکرد نامطلوب واحد رنگ رزی و ماهیت رنگ ها، حدود 50 درصد از رنگ های راکتیو، 20-8 درصد از رنگ های دیسپرس و 1 درصد از رنگ های پیگمنت به طور مستقیم به جریان فاضلاب وارد می شوند (3). هدر رفتن رنگ در مرحله رنگ رزی ناشی از تثبیت کم رنگ بر روی الیاف و حضور رنگ هیدرولیز شده غیر راکتیودر حمام رنگ است (4). هیدرولیز رنگ زمانی اتفاق می افتدکه مولکول های رنگ به جای واکنش با گروه های هیدروکسیل سلولز با آب واکنش می دهد. رنگ های هیدرولیز شده در فاضلاب حمام رنگ و در فرآیند رنگ رزی قابل استفاده مجدد نمی باشند (5). رنگ های راکتیو آزو بزرگترین دسته از رنگ های مصنوعی محلول در آب بوده که دارای بیشترین تنوع از نوع و ساختار رنگ می باشند (3). این رنگ ها معمولا به تجزیه بیولوژیکی هوازی مقاوم بوده و با فرآیند های تصفیه بیولوژیکی متداول قابل حذف نمی باشند. دلیلی احتمالی غیرقابل حذف بودن این رنگ ها در سیستم های متداول، فقدان آنزیم های ضروری برای تجزیه این رنگ ها در محیط است (6، 7).

     

     

     صنایع نساجی به علت تنوع رنگ مصرفی و روش های تولید، پساب هایی با کمیت و کیفیت شیمیایی متفاوت، تولید می کنند. در این صنایع مقادیر زیادی از فاضلاب های بسیار رنگی تولید شده که معمولا سمی، مقاوم به تجزیه بیولوژیک و پایدار در محیط زیست می باشد. لذا روش های بیولوژیکی متداول برای حذف اغلب رنگ های مصنوعی، به دلیل ساختار حلقوی پیچیده و ماهیت مقاوم رنگ موثر نیستند (8). مطالعات نشان داده است که فاضلاب صنایع نساجی دارای نسبت BOD[5] به COD[6] پایین (1/0) بوده که ناشی از ماهیت غیرقابل تجزیه بیولوژیک رنگ هااست (3). تخلیه فاضلاب های رنگی حاصل از صنایع نساجی به آب های پذیرنده، منجر به کاهش نفوذ نور خورشید و وضعیت دید، بروز اتروفیکاسیون[7] و تداخل در اکولوژی آب های پذیرنده شده، که ضمن اثر بر شدت فتوسنتز گیاهان آیزی و جلبک ها در محیط های آبی، باعث آسیب به محیط زیست می شود (9). مطالعات نشان داده است که رنگ ها دارای خاصیت سرطانزایی و جهش زایی بوده و برای محیط  زیست زیان آور می باشند (9، 10، 11). مطالعات اپیدمیولویکی نشان داده که استفاده از رنگ های با پایه ی بنزیدین[8] باعث ایجاد سرطان مثانه در انسان می شود (12، 13). حذف رنگ از فاضلاب اغلب مهمتر از مواد آلی بی رنگ است زیرا حضور مقادیر کمی از رنگ (کمتر ازppm 1)، از نظر ظاهری، قابل رویت می باشد. رنگ ها بدون تصفیه مناسب و کافی، پایدار هستند و می توانند برای دوره زمانی طولانی در محیط باقی بمانند. به عنوان مثال، نیمه عمر رنگ آبی راکتیو 19 هیدرولیز شده، در pH برابر7 و دمای 25 درجه سانتیگراد حدود 46 سال است (14). ساختار آروماتیک پیچیده رنگ ها نسبت به نور، عوامل بیولوژیکی، ازن و سایر شرایط تجزیه کننده محیط، مقاوم است. هم چنین حضور فلزات سنگین مثل کروم، کبالت، نیکل و مس (ناشی از رنگ های کمپلکس فلزی) در فاضلاب نیز یک مشکل زیست محیطی است (15). فاضلاب حاصل از صنایع نساجی به عنوان یک تهدید زیست محیطی در ساسر جهان است. بنابراین قبل از تخلیه به محیط زیست باید به نحو مطلوبی تصفیه شود. در سال های اخیر، فرآیندهای جدیدی برای تجزیه رنگ ها و استفاده مجدد از فاضلاب، توسعه یافته است. برخی از فرآیندهای نسبتا جدید مورد استفاده در صنعت تصفیه عبارتند از فرآیندهای اکسیداسیون پیشرفته (شامل Fe0/H2O2، فتوکاتالیسیس[9] و فنتون[10] ) (16) و اکسیداسون شیمیایی (روش هایی که از ازن و آب اکسیژنه استفده می نمایند)، که این فرآیندها قادر به تجزیه مواد شیمیایی سمی و ترکیبات مقاوم در برابر روش های تصفیه زیستی  - به صورت کامل یا پاره ای ، ولی در شرایط محیطی می باشند (17). در میان این فرآیند ها ، فرآیند Fe0/H2O2، بخش قابل ملاحظه ای از توجه پژوهشگران را به خود معطوف ساخته است (18).

     

     

    طبقه بندی رنگ ها:

    تمام مولکول ها می توانند پرتوهای الکترومغناطیس را جذب کنند ولی هر ماده طول موج خاصی از این پرتوها را جذب می کند. مولکول های رنگ، دارای دو گروه عامل رنگی[11] وعامل کمکی می باشند. گروه های عامل رنگ، گروهی از اتم بوده که معمولا گیرنده الکترون، دارای باند دوگانه و عامل ایجاد رنگ هستند. گروه های عامل رنگ –C=C , -C=N- , -C=O ,NO2 و NO بیشتر مطرح می باشند. عامل کمکی رنگ، دهنده الکترون بوده و می تواند از طریق تغییر انرژی کلی سیستم الکترون و بهبود حلالیت و چسبندگی رنگ به الیاف، میزان رنگ گروه عامل رنگ را تشدید نماید (19). گروههای اصلی عامل کمکی رنگ شامل – NH2, NR2, NHR, - COOH, - SO3H, - OH, - OCH3 می باشند. بر اساس ساختار شیمیایی و یا گروههای عامل رنگ 30 – 20 گروه رنگ متفاوت قابل شناسایی است (20). از بین این گروه ها، رنگ های آزو (مونو آزو، دی آزو، تری آزو، پلی آزو)، آنتروکوئینون، فتالوسیانین و تری آریل متان (شکل 1-1) از نظر کمی مهمترین گروه عامل رنگ می باشند (19).  اغلب رنگ های تجاری از نظر رنگ، ساختار و روش کاربرد در شاخص رنگ طبقه بندی می شوند. بر این اساس هر رنگ با یک نام عمومی که در برگیرنده خصوصیات رنگ و کاربرد آن است، معرفی می شود. جدول (1-1) طبقه بندی رنگ ها بر اساس کاربردشان را نشان می دهد (3، 20). رنگ ها را می توان بر اساس وضعیت یونیزاسیون نیز طبقه بندی کرد

    بر این اساس رنگ ها به 3 گروه طبقه بندی می شود:

    رنگ های آنیونی: مستقیم، اسیدی، راکتیو

    رنگ های کاتیونی: بازی

    رنگ های غیریونی: دیسپرس

  • فهرست و منابع پایان نامه بررسی کارایی پراکسید هیدروژن و پراکسید هیدروژن نانو ذرات آهن صفر در حذف رنگ Acid Red 18 از فاضلاب سنتتیک

    فهرست:

    فصل نخست.................................................................................................................................................1

    مقدمه............................................................................................................................................2

    طبقه بندی رنگ ها ........................................................................................................................4

    1-2-1- رنگ های اسیدی..........................................................................................................................7

    1-2-2- رنگ های راکتیو...........................................................................................................................7

    1-2-3- رنگ های کمپلکس فلزی ............................................................................................................8

    1-2-4- رنگ های مستقیم.........................................................................................................................9

    1-2-5- رنگ های بازی............................................................................................................................9

    1-2-6- رنگ های دندانه ای....................................................................................................................10

    1-2-7- رنگ های پخش شونده...............................................................................................................10

    1-2-8- رنگ های خمره ای....................................................................................................................10

    1-2-9- رنگ های آزو.............................................................................................................................10

    1-2-10- رنگ های گوگردی...................................................................................................................11

    1-3- مشکلات ناشی از وجود رنگ در پساب...........................................................................................12

    تاریخچه نانو فناوری....................................................................................................................14

    خواص مواد نانومتری...................................................................................................................16

    ساختار و نحوه عملکرد ذرات نانو در محیط متخلخل....................................................................18

    نحوه عملکرد ذرات نانو با آلاینده ها.............................................................................................18

     

    فصل دوم: پیشینه و روش ها.....................................................................................................................20

     

    2-1- روش ها حذف رنگ......................................................................................................................21

    2-1-1- عملیات تصفیه فیزیکی...............................................................................................................21

    2-1-2- فرآیندهای تصفیه شیمیایی..........................................................................................................21

    2-1-3- فرآیندهای تصفیه بیولوژیکی.......................................................................................................21

     

    2-2- مقایسه روش های مختلف حذف رنگ............................................................................................21

     

    2-3-  انواع تصفیه...................................................................................................................................24

    2-3-1- جذب.........................................................................................................................................24

    2-3-2-  تصفیه بیولوژیکی.......................................................................................................................24

    2-3-3- روش های الکتروشیمیایی...................................................................................................................25

    2-3-4- ازن زنی...............................................................................................................................................25

    2-3-5- فرآیند فنتون........................................................................................................................................26

    2-3-6- اکسیداسیون پیشرفته............................................................................................................................27

     

    2-4- مکانیسم واکنش نانو ذرات آهن صفر ظرفیتی با رنگ...........................................................................................28

     

     

    2-5- مروری بر مطالعات پیشین در مورد حذف رنگ Acid Red 18 و رنگ های دیگر...................................29

     

    فصل سوم: مواد، دستگاهها  و روش اندازه گیری..............................................................................................31

    3-1- دستگاه آزمایشی......................................................................................................................................32

    3-2-  مواد و وسایل مورد نیاز..........................................................................................................................37

    3-3- تعیین مشخصات رنگ آزوی Acid Red 18 ......................................................................................39

    3-4- روش انجام تحقیق...................................................................................................................................40

    3-5- طراحی آزمایش.......................................................................................................................................43

     

    فصل چهارم: نتایج.............................................................................................................................................45

    4-1- نتایج کلی آزمایش ها با پراکسیدهیدروژن تنها........................................................................................46

    4-2- نتایج کلی آزمایش ها با پراکسید هیدروژن – نانو ذرات آهن صفر ظرفیتی (Fe0/H2O2)........................56

    4-3- نتایج متغییرهای بهینه آزمایش با پراکسید هیدروژن – نانو ذرات آهن صفر ظرفیتی (Fe0/H2O2).......68

    4-3-1- اثر pH محلول...................................................................................................................................68

    4-3-2- اثر زمان تماس....................................................................................................................................69

    4-3-3- اثر غلظت اولیه رنگ...........................................................................................................................70

    4-3-4- اثر پراکسید هیدروژن تنها در غلطت های مختلف، همراه با سایر پارامترهای بهینه(H2O2)...............71

    4-3-5- تاثیر NZVI در غلظت های مختلف همراه با پراکسید هیدروژن و سایر پارامترهای بهینه...................72

     

    4-4- نتایج آزمایش ها با فرآیند پراکسید هیدروژن تنها همراه با سایر پارامترهای بهینه(H2O2).......................73

    4-4-1- اثر pH محلول....................................................................................................................................73

    4-4-2- اثر زمان تماس....................................................................................................................................74

    4-4-3- اثر غلظت اولیه رنگ..........................................................................................................................75

    4-3- مقایسه کارایی پراکسید هیدروژن و نانو ذرات آهن صفر – پراکسیدهیدروژن در حذف

     Acid Red 18 از فاضلاب سنتتیک................................................................................................................76

    فصل پنجم: نتیجه گیری و پیشنهادها.................................................................................................................78

    5-1- بحث........................................................................................................................................................79

    5-2- نتیجه گیری..............................................................................................................................................81

    5-3- پیشنهادها:................................................................................................................................................82

    5-3-1- پیشنهادات اجرایی..............................................................................................................................82

    5-3-2- پیشنهادات پژوهشی............................................................................................................................83

    فهرست مراجع..................................................................................................................................................84

    منبع:

     

    امیر بیگی ، حسن، اصول تصفیه و بهداشت آب،ناشر: اندیشه ‌رفیع، صفحه 15

    Koplin, D. W., Furlong, E. T., Meyer, M. T. (1999-2000). Pharmaceuticals, hormones and other organic

    wastewater contaminants in US streams, Environ Sci Technol, 36, 1202–1211.

    Pirgalioglu S, zbelge T. Comparison of non-catalytic and catalytic ozonation processes of three different aqueous single dye solutions with respect to powder copper sulfide catalyst. Applied Catalysis A: General 2009; 363: 157–163.

    Rajgopalan, S. (1995). Water pollution problem in the textile industry and control. In: T RK, ed. Pollution Management in Industries. Karad., India 21–44.

    Ali, M., Sreekrishnan, T. R. (2001). Aquatic toxicity from pulp and paper mill effluents – a review, Adv Environ Res, 5, 175–196.

    Dince, A R, Gunesn Y, Karakaya N. Coal-based bottom ash (CBBA) waste material as adsorbent for removal of textile dyestuffs from aqueous solution. J. Hazard. Mater 2007; 141: 529-535.

    Ledakowicz S, Solecka M, Zylla R. Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology 2001; 89: 175– 184.

    Zhang J, Lee K, Cui L, Jeong T. Degradation of methylene blue in aqueous solution by ozonebased processes. Journal of Industrial and Engineering Chemistry 2009; 15: 185–189.

    Ramakrishna, K. R. Dye Removal Using Peat. Saskatchewan, canada: American Dyestuff Reporter; 1996 October.

    FU, Y., VIRARAGHAVAN, T. (2003). Column Studies for Biosorption of Dyes from Aqueous Solutions on Immobilised Aspergillus niger fungal Biomass, Water SA, 29, 465-472.

    Yeddou, N., Bensmaili, A. (2005). Kinetic models for the sorption of dye from aqueous solutionby claywood sawdust mixture, Desalination, 185, 499-508

    Liu Y, Chen X, Li J, Burda C. Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere. 2005;61:11-18

    Jiantuan Ge, Jiuhui Qu. Ultrasonic irradiation enhanced degradation of azo dye on MnO2. Appl Catal B Environ. 2004;47:133-140.

    Lee JW, Choi SP, Thiruvenkatachari R, Shim WG, Moon H. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of  reactive dyes. Dyes Pigments.2006;69:196-203.

    Muhammad A, Shafeeq A, Butt MA, Rizvi ZH, Chughtai MA, Rehman S. Decolorization and Removal of COD and BOD from Raw and Biotreated Textile dye Bath Effluent Through Advanced Oxidation Processes (AOPS). Brazilian J Chem Eng 2008; 25(03): 453-9.

    Ozdemir C, den MKO, Sahinkaya S, Kalipci E. Color Removal from Synthetic Textile Wastewater by Sono-Fenton Process. Clean: Soil, Air, Water 2011; 39(1): 60-7.

    Peres JA, Beltrán de Heredia J, Domínguez JR. Integrated Fenton’s reagent coagulation/flocculation process for the treatment of cork processing wastewaters. J Hazard Mater 2004; 107(3): 115- 21.

    Hung-Yee S, Ming-Chin C, Chi-Chen C. Integration of nanosized zero-valent iron particles addition with UV/H2O2 process for purification of azo dye Acid Black 24 solution. J.Hazardous materials, 2009, 167.1/3, 1178-1184.

    Aos Santos AB, Cervantes FJ, van Lier JB. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour Technol. 2007;98:2369-85.

    Du WL, Xu ZR, Han XY, Xu YL, Miao ZG. Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye. J Hazard Mater. 2008; 69:152-56.

    Lucas M.S. and Peres J.A., Degradation of Reactive Black 5 by Fenton/UV-C and ferrixalate/H202/solar light processes, Dyes and Pigments., 1-8 (2006).

    Mahmoudi N.M., Arami M ., yusefi limaei N. The investigation of chemical structure effect in analysis of photo catalysis of tannery chromogens with photo catalysis process (UV/Tio2/H22O) ninth congress of Iran chemistry engineering 2004., 1060-1066.

    Lopes, A., Martins, S., Morao, A., Magrinho, M., and Goncalves, I. (2004). “Degradation of a textile dye C. I. direct red 80 by electrochemical processes.” Portugaliae Electrochimica Acta., 22, 279-294 .

    Peng, Y., Fu, D., Liu, R., Zhang, F., and Liang, X. (2008). “NaNO2/FeCl3 catalyzed wet oxidation of the azo dye acid orange 7.” Chemosphere, 71, 990-997.

    Joshi, T., Iyengar, L., Singh, K., and Garg, S. (2008). “Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes.” Bioresource Technology, 99, 7115-7121.

    Somasiri, W., Li, X. F., Ruan, W. Q., and Jian, C. (2008). “Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater.” Bioresource Technology, 99, 3692-3699.

    Tauber, M. M., Gubitz, G. M., and Rehorek, A. (2008). “Degradation of azo dyes by oxidative processes –Laccase and ultrasound treatment.” Bioresource Technology, 99, 4213-4220.

    Kaur SN Singh V. Visible light induced sonophotocatalytic degradation of  Reactive Red dye 198 using dye sensitized TiO2. Ultrason Sonochem 2007; 14(5): 531-7.

    Low BTN Ting YPN Deng S. Surface modification of Penicillium chrysogenum mycelium for enhanced anionic dye removal. Chem. Eng. J 2008; 141(1-3): 9–17

    آشنایی با نانو تکنولوژی، http://www.forum.98ia.com/archive/index.php/t-249138.html

    Mahvi AH, Heibati B, YARI AH, Vaezi N., Efficiency of Reactive Black 5 dye removals and determination of Isotherm Models in aqueous solution by use of activated carbon made of walnut wood, Res. J. Chem.Environ, V 16(3), 2012.

     

    Wang C.B. and Zhang W.X., Synthesizing nanoscale iron particles for rapid and complete dechlorination of  TCE and PCBs, Environ. Sci. Technol, 31, 2154–2156 (1997).

    Sunge H.J. and Francis I., Nano technology For Environmental remediation, Springer Science Business Media, Inc 5-42 (2006)11.

    فناوری نانو تکنولوژی، http://www.pazhoheshkade.ir

    مواد نانو متخلخل، http://edu.nano.ir/index.php?actn=papers_view&id=64

    Zhang W.X., and Li X.Q. 2006. Iron Nanoparticles: the Core-Shell Structure and Unique Properties for Ni (II) Sequestration. Langmuir, 22:4638-4642.

    Zhang W.X., and Li X.Q. 2007. Sequestration of Metal Cations with Zerovalent Iron Nanoparticles- A Study with High Resolution X-ray Photoelectron Spectroscopy (HR-XPS). The Journal of Physical Chemistry C, 111:6939- 6946.

    Kanel, S.R., Greneche, J.M., and Choi, H. (2006). “Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material.” Environ. Sci. Technol., 40, 2045-2050.

    Selcuk H, Meric S. Ozone Pre-Oxidation of A Textile Industry Wastewater for Acute Toxicity Removal. Global NEST J 2006; 8(2): 95-102.

    Abo-Farha SA. Comparative Study of Oxidation of Some Azo Dyes by Different Advanced Oxidation Processes: Fenton, Fenton- Like, Photo-Fenton and Photo-Fenton-Like. J Am Sci 2010; 6(10): 128-42.

    Rezaee A, Ghaneian MT, Khavanin A, Hashemian SJ, Moussavi G. Photochemical oxidation of reactive Blue 19 dye (RB19) in rextile wastewater by UV/K2S2O8 process. Environ Health Sci Eng 2008; 5(2): 95-100.

    Noubactep C, Care S. On nanoscale metallic iron for groundwater remediation. Journal of Hazardous Materials 2010; 182(1-3): 923-927.

    KestioSlu K, Yonar T and Azbar N. Feasibility of physico-chemical treatment and advanced oxidation processes (AOPs) as a means of pretreatment of olive mill effluent. J. Process Biochemistry. 2005 ; 40: 2409 . 2416

    Pignatello J.J. Dark and photoassisted Fe3+ catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol. 1992;26: 944-951.

    Uri N. Inorganic free radicals in solutions. Chem. Rev. 1952 ; 50: 375-454.

    Ho, Y. S. (2006). Second-order kinetic model for the sorption of cadmium onto tree fern : A comparison of  linear and non-linear, Water Res, 40, 119 -125.

    Tsui, L. S., Roy, W. R., Cole, M. A. (2002). Removal of dissolved textile dyes from wastewater by compost sorbent, COLOR TECHNOL, 119, 14-18.

    Reddy, S. S., Kotaiah, B., Reddy, N. S. P., Velu, M. (2006). The removal of composite reactive dye from dyeing unit effluent using sewage sludge derived activated carbon, Turkish J Eng Env Sci, 30, 367- 373.

    Kadirvelu, K., Karthika, C., Vennilamani, N., Pattabhi, S. (2005). Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution : kinetic and equilibrium studies, CHEMOSPHERE, 60, 1009-1017.

    Namasivayam, C., Kavitha, D. (2002). Removal of congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes Pigments, 54.

    Hameed, B. H., Din, A. T. M., Ahmad, A. L. (2007). Adsorption of methylene blue onto bamboobased activated carbon:Kinetics and equilibrium studies, J Hazard Mater, 141, 819-825.

    مهدی هادی 1 ، محمد رضا سمرقندی، رحمانی ،علیرضا 3، محمد تقی صمدی 2، رضا شکوهی 2، فاطمه ناظمی، پارامترهای رفتارستون در جذب رنگ از محلولهای آبی توسط ستون بستر- ثابت کربن فعال، دوازدهمین همایش ملی بهداشت محیط، دانشگاه علوم پزشکی شهید بهشتی، دانشکده بهداشت، آبان ماه 1388.

    Behnejadi Mafa, Daneshvarfan, Rabbani M, Modir N. synthetic modeling of breakdown & decolourization photo catalysis mono Azo dye from tannery industry in UV/Tio2 process ninth congress of Iran chemistryengineering. 2004 ; 851-854

     سید محمد موسویان ، عباس رضایی، تصفیه فاضلاب آلوده و حاوی رنگ زیاد صنایع به روش تلفیقی الکتروشیمیایی - تابش اشعه گاما، چهارمین همایش سراسری بهداشت حرفه ای ایران – همدان 1383.

    Chao H, Yun Y, Xing F H, Larbot A. Influence of silver doping on the photocatalytic activity of titania films. Applied Surface Science 2002; 239–247.

    Daneshvar, N.; Hejazi,,M.J.; Khataee,A.R., Rangarangy,B., Photocatalytic Degradation of an Organophosphorus Pesticide Phosalone in Aqueous Suspensions of Titanium Dioxide, Journal of Environmental Science and Health, Part B Vol 39, P285-295, 2004.

    نظام الدین دانشور، علیرضا ختائی, محمد حسین رسولی فرد، سارا فرجی،کاربرد فرآیندهای UV/H2O2/Fe(III) وUV/H2O2,UV/H2O2/Fe(II) ، در رنگبری ماده رنگزای ردآمین B  ازآبهای آلوده، اولین سمینار تخصصی محیط زیست و رنگ، بهمن ١٣

    Brltran F, Rivas F, Spinosa R M. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Applied Catalysis. B. Environmental 2002; 39: 221-231.

    Nawrockia J, Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation, Review. Applied Catalysis B: Environmental 2010; 99: 27-42.

    Yang Y, Ma J, Qin Q, Zhai X. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. Journal of Molecular Catalysis A: Chemical 2007; 267: 41–48.

    Peres JA, Beltrán de Heredia J, Domínguez JR. Integrated Fenton’s reagent coagulation/flocculation process for the treatment of cork processing wastewaters. J Hazard Mater 2004; 107(3): 115- 21.

    Gharbani P, Tabatabaii SM, Mehrizad A. Removal of Congo red from textile wastewater by ozonation. Environ Sci Tech 2008; 5(4): 495-500.

    Kos L, Perkowski J. Decolouration of Real Textile Wastewater with Advanced Oxidation Processes. Fibres & Textiles 2003; 114(43): 81-5.

    Hrvoje Kusic, Natalija Koprivanac , Lidija  Srsan. Azo dye degradation using Fenton type processes assisted by UV irradiation, A kinetic study. Journal of Photochemistry and Photobiology A: Chemistry. 2006 ; 181: 195- 202

    Barbusinski K. The Modified Fenton Process for Decolorization of Dye Wastewater. Polish Journal of Environmental Studies. 2005; 14: 281-285

    Poursaberi T, Hassanisadi M, Nourmohammadian F. Application of Synthesized Nanoscale Zero-Valent Iron in the Treatment of Dye Solution Containing Basic Yellow 28. 2012, Prog. Color Colorants Coat, 5, 35-40

    Liu T, Zhong-Liang W, Zhaob L, Yang X. Enhanced chitosan/Fe0-nanoparticles beads for hexavalent chromium removal from wastewater. Chem. Eng. J. 2012, 189– 190, 196– 202.

    Kim H, Hong HJ, Jung J, Kim, S.H, Yang JW. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J.Hazardous materials. 2010, 176(1), 1038-1043

    Wang Y, Zhou D, Wang Y, Zhu X,  Jin S. Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron. Journal of Environmental Sciences. 2011, 23(8), 1286-1292

    Rakhshaee R. Rule of Fe0 nano-particles and biopolymer structures in kinds of the connected pairs to remove Acid Yellow 17 from aqueous solution: Simultaneous removal of dye in two paths and by four mechanisms. Journal of hazardous materials. 2011, 197, 144-152.

    Chang MC, Shu HY, Yu H.H, Sung Y.C. Reductive decolourization and total organic carbon reduction of the diazo dye CI acid black 24 by zerovalent iron powder. J. Chem. Technol. Biotechnol. 2006, 81, 1259-1266.

    Frost RL, Xi Y, He H. Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption. Journal of colloid and interface science. 2010, 341(1), 153-161.

    Barbusinski J. and Majewski., Discoloration of Dye Acid Red 18by Fenton Reagent in the Presence of Iron Powder, Polish Jornal of Environmental Studies., 12 (2), 151-155 (2003).

    Mozia s., Tomaszewska M. and Morawski A.W.. Removal of azo-dye Acid Red 18 in two hybrid membrane systems emploting a photogradation process, Desalination., 198, 183-190 (2006).

    Mozia s., Tomaszewska M. and Morawski A.W., Photocatalytic of azo-dye Acid Red 18, Desalination., 185, 449-456 (2005).

    Shu H.Y., Chang M.C. and Chang C.C., Integration of nanosized zero-valent iron particles addition with UV/H2O2 process for purification of azo dye Acid Black 24 solution, Journal of Hazardous Materials., 167, 1178–1184 (2009).

    در مورد خود دستگاه اسپکتروفتومتر

    Chamarro,E, marco A and Esplugas, S, Use of fenton reagent to improve organic chemical biodegradability, Wat Res,. 2001 ; 35 : 1047- 1051

    Abadi Ali, Majid , Fazel , Shahrzad , Vahab zadeh , Farzaneh . The application of cracing acid operation & fenton process in olive oil effluent treatment. journal of counselor engineerings corporation water & waste water. 2006 ; 57-61

ثبت سفارش
عنوان محصول
قیمت